2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC)

Static Analysis of File Manipulation Scripts

Rodney Rodriguez and Xiaoyin Wang
Department of Computer Science, University of Texas at San Antonio
{rodney.rodriguez, xiaoyin.wang}@utsa.edu

Abstract—Various scripts are often used to automatically build,
configure, and deploy software, as well as to combine code base
written in different programming languages. In this project,
we develop novel analysis techniques for file manipulation
scripts to statically detect path-related errors and estimate
the necessary directory structure (path pre-conditions) before
running a script. Due to the prevalence of path generation and
file manipulation operations in various scripts, our proposed
technique may enhance the reliability and transportability of
these scripts.

1. Introduction

Path generation and file manipulation account for a large
portion of these scripts and path-related bugs [1] such as
“file not found” and “permission denied” are common in
the field. Furthermore, when transporting such scripts to
other machines (including virtual machines and docker con-
tainers), it is necessary to extract their path pre-condition,
which can be tedious and error-prone. While existing static
string analyses [2], [3], [4] can estimate values of path
variables (variables representing file paths) as automata and
summarize string operations, they cannot check states of
directory structures or summarize file operations (e.g., cp,
rm). Unlike memory objects whose structure are often pre-
defined in the code as class / struct definitions, directory
structure can be manipulated at runtime and no existing
techniques can statically check the correctness of directory
structure states and operations on them.

In this paper, we describe the first technique to statically
estimate the states of the file system at certain program
points of a file-manipulation script. There are three major
challenges. The first challenge is how to design proper ab-
stract domains to represent the state of directory structures.
We further need to represent file permissions and links to
detect related errors. We overcome this challenge with the
novel intuition: a state of the file system can be represented
as a set of paths (strings), so an estimation of the file-system
state can be represented as an estimation of its corresponding
path set. The second challenge is how to represent file
operations as transfer functions on the abstract domain. To
overcome this challenge, we use FSTs (Finite State Trans-
ducers) to summarize the effect of file operations (e.g., cp,
rm) on directory structures (path sets). The third challenge
is the large variety of scripting languages and system / third-
party commands that have effect on the file system. To make
our technique general enough, we designed a new intermedi-
ate language (FIle Manipulation Intermediate Language, or

2473-3105/19/$31.00 ©2019 IEEE
DOI 10.1109/PRDC47002.2019.00039

118

Figure 1. File-System-State Automaton

FMIL) that abstracts control flows, string operations (e.g.,
concatenation, replace) and basic file operations (e.g., cp,
mkdir) from the programming language to be analyzed. The
benefit of FIMIL is to have a common input format for
our analysis so that it can support any scripts that can be
translated to FMIL.

2. Background

There are research efforts on checking the correctness
of build and configuration scripts such as Javascript [5] or
Perl [6]. There are also research efforts on checking the
correctness of build and configuration scripts, such as make-
files [7] and puppet scripts [8]. Some recent research [9],
[10], [11] studied the automatic repair and generation of
build scripts [12]. Adams et al. [13] proposed a framework to
extract a dependency graph for build configuration files, and
provide automatic tools to keep consistency during revision.
However, these analyses mostly perform whole program
analysis or bottom-up analysis on one type of code with
conservative assumptions of entry states, while our approach
is more of hybrid analyses that take advantage of concrete
execution records. Furthermore, they focus on the internal
logic or global variables, while our work further handles the
program’s interaction with system environment and system
environment states.

3. Analysis Framework

The basic idea behind our research is that file-system
states can be presented as a set of path values (strings).
To handle infinite string value sets, we use automata to
summarize all possible file-system states. For example, Fig-
ure 1 shows the automaton presentation of a file system
state with root folder ““/”, folder “/foo”, and files “/foo/bar”
and “/abc”. We have implemented File Manipulation In-
termediate Language (FMIL) as the preliminary basis for
the research. FMIL is currently supported with a parser,
an abstraction interpretation engine (based on fixed point

TE Yk

Figure 2. The FST for parentDir Operation

algorithm), and a simple static path analysis which considers
only file operations with constant paths as their arguments.

In the scripts, path arguments are often generated from
string constants with string operations. We can use string
analysis to estimate path argument’s possible values as an
automaton, but then we need to feed this automaton to
the file-state transfer functions, which makes them much
more complicated. As an example, for the operation “cp
X y”, and automaton aut(x) representing possible values of
X, automaton aut(y) representing possible values of y, the
transfer function from old file-system abstraction D to new
abstraction D” will be:

D’ = DU (aut(y)./.replace(D N aut(x).*,

parentdir(aut(z)),”)) (1)

, in which “.” represents string concatenations, replace(a, b,
c) is the standard string operation to replace appearances
of regular expression b in automaton a to string ¢, which
is supported by a Finite State Transducer (FST). And par-
entDir(a) is the string operation to get parent directory of
a path a (substring until last “/” in a or second last “/” in
a if a ends with “/). This operation is straightforward for
a constant string input, but for an automaton input I, we
need to carefully design an FST (as shown in Figure 2) to
transform I to a correct output automaton O, so that . For rm
operations it is more complicated. As string analysis always
over-estimates the paths to be deleted, if we simply do a
difference between the automata, the resulted file-system
state will no longer be an over-estimation.

Although our research is fully based on the above intu-
itive ideas. Designing a full-fledged analysis for file-system
states has a lot of complications. We specifically identified
risks and challenges from three aspects, and we list our
mitigation plans as follows.

e Modeling of File Links. File system may contain
link files that link to a target file or directory at a
different path. This will cause some operations on
the link file to be actually applied to the target file or
directory. So, we need to model links between paths
in a file-system state. Since the arguments of link-
generation operations can be string variables, we
plan to use a domain of automaton pairs to present
the links between possible values of the arguments.
Modeling File Permissions. Existence is the basic
property of a path value. Permission is another im-
portant property of a path value. We plan to handle

119

permissions by enriching each acceptance state in
the automata with tags indicating the upper and
lower permission bound of path values accepted at
the state. When a permission changing (e.g. chmod)
or checking operation is performed, we will intersect
the argument automata with the file-system-sate au-
tomata and trace matching states to find out the tags
of which acceptance states should be changed.
Modeling File Co-Existence. Paths that may exist
in a file-system state may not exist together. For
more precise analysis, we need to summarize co-
existence relationships between paths. We plan to
maintain two state-pair domains for the automatons
to model the file pairs that may co-exist or may not
co-exist.

References
[1] Y. Song, X. Wang, T. Xie, L. Zhang, and H. Mei, “JDF: detecting

duplicate bug reports in jazz,” in Proc. ICSE, Volume 2, 2010, pp.
315-316.

H. Zhang, H. B. K. Tan, L. Zhang, X. Lin, X. Wang, C. Zhang, and
H. Mei, “Checking enforcement of integrity constraints in database
applications based on code patterns,” Journal of Systems and Soft-
ware, vol. 84, no. 12, pp. 2253-2264, 2011.

H. Zhong and X. Wang, “Boosting complete-code tool for partial
program,” in Proc. ASE, 2017, pp. 671-681.

X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-
to-externalize constant strings for software internationalization with
generalized string-taint analysis,” Software Engineering, IEEE Trans-
actions on, vol. 39, no. 4, pp. 516-536, 2013.

M. Madsen, B. Livshits, and M. Fanning, “Practical static analysis of
javascript applications in the presence of frameworks and libraries,”
in Proc. FSE, 2013, pp. 499-509.

D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE software, no. 1, pp. 42-51, 2002.

A. Tamrawi, H. A. Nguyen, H. V. Nguyen, and T. N. Nguyen, “Build
code analysis with symbolic evaluation,” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press,
2012, pp. 650-660.

R. Shambaugh, A. Weiss, and A. Guha, “Rehearsal: a configuration
verification tool for puppet,” in ACM SIGPLAN Notices, vol. 51, no. 6.
ACM, 2016, pp. 416-430.

F. Hassan and X. Wang, “Hirebuild: an automatic approach to history-
driven repair of build scripts,” in Proceedings of the 40th International
Conference on Software Engineering. ACM, 2018, pp. 1078-1089.

X. W. Foyzul Hassan, Rodney Rodgriguez, “Rudsea: Recommending
updates of dockerfiles via software environment analysis,” in Inter-
national Conference on Automated Software Engineering (ASE), New
Idea Paper, To Appear, 2018.

F. Hassan, S. Mostafa, E. S. Lam, and X. Wang, “Automatic building
of java projects in software repositories: A study on feasibility and
challenges,” in Empirical Software Engineering and Measurement
(ESEM), 2017 ACM/IEEE International Symposium on. 1EEE, 2017,
pp. 38-47.

F. Hassan and X. Wang, “Mining readme files to support automatic
building of java projects in software repositories: Poster,” in Proceed-
ings of the 39th International Conference on Software Engineering
Companion, 2017, pp. 277-279.

B. Adams, H. Tromp, K. De Schutter, and W. De Meuter, “Design re-
covery and maintenance of build systems,” in Software Maintenance,

2007. ICSM 2007. IEEE International Conference on, 2007, pp. 114—
123.

(2]

(3]

(4]

(5]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13]

